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Polyhydroxy benzenes and quinones possessing the oxygen-
ation pattern of 1,2,3,4-tetrahydroxybenzene1 often display
biological activity. Aurantiogliocladin2 and fumigatin3 are
antibiotics.1 Coenzyme Qn)10 4 is an essential antioxidant in
humans protecting low-density lipoproteins from atherosclerosis-
related oxidative modification.2 Dillapiole 5 is a pyrethrin
synergist and responsible for the sedative effect ofPerilla
frutescensleaves.3 A synthetic route (Scheme 1) has now been
elaborated which provides convenient access to 1,2,3,4-tetrahy-

droxybenzene viamyo-inositol intermediacy. The general utility
of this route is demonstrated by a concise synthesis of coenzyme
Qn)3 4. While the shikimate pathway and polyketide biosynthesis
have traditionally provided biocatalytic access to aromatic
chemicals, syntheses of 1,2,3,4-tetrahydroxybenzene1 and co-
enzyme Qn)3 4 are distinguished by the recruitment ofmyo-
inositol biosynthesis.

Synthesis ofmyo-inositol byEscherichia coliJWF1/pAD1.88A
begins with D-glucose uptake and conversion toD-glucose
6-phosphate catalyzed by theE. coli phosphotransferase system4

where phosphoenolpyruvate is the source of the transferred
phosphoryl group (Scheme 1).D-Glucose 6-phosphate then
undergoes cyclization tomyo-inositol 1-phosphate catalyzed by
myo-inositol 1-phosphate synthase. This enzyme activity, which
results from expression of theSaccharomyces cereVisiae INO1
gene5 on plasmid pAD1.88A, varied significantly (0.022, 0.043,
0.018, and 0.009µmol/min/mg at 18, 30, 42, and 54 h,
respectively) over the course of the fermentation.

E. coli JWF1/pAD1.88A synthesized 21 g/Lmyo-inositol and
4 g/L myo-inositol 1-phosphate in 11% combined yield (mol/
mol) fromD-glucose under fed-batch fermentor conditions (Figure
1). Bothmyo-inositol andmyo-inositol 1-phosphate accumulated
in the culture supernatant. In eucaryotes, hydrolysis ofmyo-

inositol 1-phosphate tomyo-inositol is catalyzed by the enzyme
inositol monophosphatase.6 Phosphoester hydrolysis was fortu-
itously catalyzed inE. coli JWF1/pAD1.88A by unidentified
cytosolic or periplasmic phosphatase activity.

Oxidation ofmyo-inositol to myo-2-inosose, the next step in
the conversion ofD-glucose into 1,2,3,4-tetrahydroxybenzene1,
is the first catabolic step whenmyo-inositol is used as a sole source
of carbon for growth and metabolism by microbes such asBacillus
subtilis.7 myo-Inositol can also be oxidized byGluconobacter
oxidanswithout loss of productmyo-2-inosose to catabolism.8

Accordingly, incubation ofG. oxidansATCC 621 in medium
containing microbe-synthesizedmyo-inositol led to the formation
of myo-2-inosose (Scheme 1) in 95% isolated yield.

Inososes have been thought to be stable under acidic conditions
and reactive under basic conditions with reported aromatizations
resulting from successiveâ-eliminations being dominated by
formation of 1,2,3,5-tetrahydroxybenzene.9 We, however, ob-
servedmyo-2-inosose to be reactive under acidic conditions with
no apparent formation of 1,2,3,5-tetrahydroxybenzene. Refluxing
G. oxidans-producedmyo-2-inosose for 9 h indegassed, aqueous
0.5 M H2SO4 under argon cleanly afforded 1,2,3,4-tetrahydroxy-
benzene in 66% isolated yield.

Conversion ofD-glucose into 1,2,3,4-tetrahydroxybenzene1
is a three-step synthesis. 1,2,3,4-Tetrahydroxybenzene1 has
historically been obtained from pyrogallol6 by a longer route
(Scheme 2) involving synthesis and subsequent hydrolysis of
aminopyrogallol7.10 Due to the tedious nature of this synthesis,10b

two alternate routes (Scheme 2) were used to obtain authentic
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Scheme 1a

a Key: (a) phosphoenolpyruvate:carbohydrate phosphotransferase; (b)
myo-inositol 1-phosphate synthase; (c) phosphatase activity; (d) dehy-
drogenase activity; (e) 0.5 M H2SO4, H2O, reflux.

Figure 1. Cultivation of E. coli JWF1/pAD1.88A under fed-batch
fermentor conditions: solid bar, inositol; open bar,myo-inositol 1-phos-
phate; (b) cell dry weight.
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samples of 1,2,3,4-tetrahydroxybenzene1. Low-yielding, direct
hydroxylation11 of protected pyrogallol8 or higher-yielding,
indirect oxidation via formyl10 intermediacy12 yielded respec-
tively quinone9 and phenol11.12 Hydrogenation of9 and 11
afforded products which were identical to 1,2,3,4-tetrahydroxy-
benzene1 synthesized (Scheme 1) fromD-glucose.

Variations in strategies employed for hydroxyl protection
combined with the ease of metalation and alkylation of the
aromatic nucleus makes1 a versatile intermediate for the synthesis
of a wide spectrum of naturally occurring 1,2,3,4-tetrahydroxy-
benzene derivatives. For example, permethylation (Scheme 3) of
1 leads to tetramethyl12 which undergoes facile lithiation and
methylation affording13 in high yield. Formation of an organo-
cuprate from13, farnesylation, and subsequent reaction with
(NH4)2Ce(NO3)6 affords coenzyme Qn)3 4. This four-step syn-
thesis of coenzyme Qn from tetrahydroxybenzene1 is equal in
length to the shortest reported13asynthesis of coenzyme Qn which

usesp-cresol as a starting material and substantially shorter than
syntheses of coenzyme Qn from pyrogallol, gallic acid, or
vanillin.13b-d

Only one oxygen atom in coenzyme Qn, a shikimate pathway
product, is directly derived fromD-glucose. The remaining oxygen
atoms are derived from O2 via enzyme-catalyzed hydroxylations.
Trihydroxybenzenes, pyrogallol and phloroglucinol possess the
maximum number of oxygen atoms attached to a benzene nucleus
by the shikimate pathway or polyketide biosynthesis in lieu of
enzyme-catalyzed hydroxylation. At least a dozen enzymes are
required to disassemble and reassemble the carbon atoms of
D-glucose into the benzene nucleus of coenzyme Qn, pyrogallols,
and phloroglucinols. By comparison, synthesis of 1,2,3,4-tetrahy-
droxybenzene1 via myo-inositol intermediacy requires only four
enzymes and an acid-catalyzed dehydration for all six carbon and
all four oxygen atoms to be directly derived from the carbon and
oxygen atoms ofD-glucose. Synthesis (Scheme 1) of 1,2,3,4-
tetrahydroxybenzene1 is thus a useful example of enzyme and
atom14 economy in organic synthesis in addition to being a
significant strategic departure from previous biocatalytic syntheses
of aromatic chemicals fromD-glucose.

Acknowledgment. Research was supported by the National Science
Foundation. Professor Susan A. Henry provided theINO1 locus.

Supporting Information Available: Synthesis ofmyo-inositol,myo-
2-inosose,1, 8, 9, 10, 11, 12, 13, 14, and 4 (PDF). This material is
available free of charge via the Internet at http://pubs.acs.org.

JA9840293
(10) (a) Leston, G. InKirk-Othmer Encyclopedia of Chemical Technology,

4th ed.; Kroschwitz, J. I., Howe-Grant, M., Eds.; Wiley: New York, 1996;
Vol. 19, p 778. (b) Einhorn, A.; Cobliner, J.; Pfeiffer, H.Ber. Dtsch. Chem.
Ges.1904, 37, 110.

(11) Matsumoto, M.; Kobayashi, H.; Hotta, Y.J. Org. Chem.1985, 50,
1766.

(12) Kolonits, P.; Major, AÄ .; Nógrádi, M. Acta Chim. Hung.1983, 113,
367.

(13) (a) Keinan, E.; Eren, D.J. Org. Chem.1987, 52, 3872. (b) Syper, L.;
Kloc, K.; Mlochowski, J. Tetrahedron1980, 36, 123. (c) Sugihara, H.;
Watanabe, M.; Kawamatsu, Y.; Morimoto, H.Liebigs Ann. Chem.1972, 763,
109. (d) For an overview of earlier syntheses, see: Mayer, H.; Isler, O.Methods
Enzymol.1971, 18, 182.

(14) Trost, B. M. InGreen Chemistry; Anastas, P. T., Williamson, T. C.,
Eds.; Oxford: New York, 1998; Chapter 6.

Scheme 2a

a Key: (a) Cl2C(O), pyridine, xylene, reflux; (b) H2SO4, HNO3; (c)
KOH (aq); (d) Zn, HCl; (e) H2O, reflux; (f) BnBr, K2CO3, acetone, reflux,
83%; (g) K3Fe(CN)6, H2O2, AcOH, 11%; (h) H2, 10% Pd/C, EtOH, 100%;
(i) N-methylformanilide, POCl3, 60°C, 93%; (j) HCO2H, H2O2, CH2Cl2,
0 °C to room temperature, 95%; (k) H2, 10% Pd/C, EtOH, 80%.

Scheme 3a

a Key: (a) (CH3)2SO4, NaOH, 69%; (b) (i)n-BuLi, TMEDA, hexanes,
THF, 0 °C; (ii) CH3I, 0 °C, 83%; (c) (i)n-BuLi, TMEDA, hexanes, 0
°C; (ii) CuCN, THF, Et2O, 0 °C; (iii) farnesyl bromide,-78 °C, 57%;
(d) CAN, pyridine-2,6-dicarboxylate, CH3CN/H2O, 0 °C, 46%.
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